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Overview

I Working Title:
Sequential Bayesian Learning for Hidden Semi-Markov Models

I Authorship: Jointly co-authored with Dr. Konstantinos Kalogeropoulos

I Timeline: First project
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Motivation

I Discrete State Space Models (SSM) have applications in:
ecology, economics, finance, robotics and signal processing *.

I Most popular SSM known as Hidden Markov Models (HMM)

I Hidden semi-Markov Models (HSMM) a more flexible HMM extension

I Goal: provide methods to estimate HSMM in

I (1) a computationally feasible time,

I (2) an exact manner, i.e. only subject to Monte Carlo error,

I (3) a sequential setting.

(*) (Bulla and Bulla, 2006; Lindsten and Schön, 2013; Chopin and Papaspiliopoulos, 2020;
Corenflos et al., 2021)
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Model Setup - From HMM to HSMM

x1πα

s1 s2 · · · sTfθi,sβi

e1 e2 · · · eTgθi,eγi

K

(a)

x1πδ

d1 d2 · · · dThθi,dαi

s1 s2 · · · sTfθi,sβi

e1 e2 · · · eTgθi,eγi

K

(b)

(a) HMM with observed data et ∼ gθ(et | st) and latent state st ∼ fθ(st | st−1).

(a) p(st+k = j , st+1:t+k−1 = i | st = i) is implicitly geometric.

(b) HSMM extends model via latent dt ∼

δ(dt , dt−1 − 1) dt−1 > 0

hθ(dt | st , dt−1) dt−1 = 0
,

which governs the state duration for st ∼

δ(st , st−1) dt−1 > 0

fθ(st | st−1, dt−1) dt−1 = 0
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Challenges

I Computational complexity for HMM likelihood: O(K 2T )*,
where K = number of latent states, T = number of data points.

I Computational complexity for HSMM likelihood: O(K 2(dmax − dmin)
2T )**,

where dmin and dmax denote the minimal and maximal state duration in a
latent regime.

I Idea: Use a particle filter for the likelihood computation in O(NT )

operations, where N denotes the number of particles used in the filter.

(*) (Baum and Petrie, 1966)
(**) (Murphy, 2002; Dewar et al., 2012)
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Contribution

I We provide and verify an efficient computational scheme for Bayesian
parameter estimation on HSMMs.

I We demonstrate how this algorithm can be used for regime switching,
model selection and clustering purposes.

I We propose a novel class of models by linking AR-type models with
HSMMs to better describe data consisting of financial time series.
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Overview

I Working Title:
SIR-type State Space Models with Piecewise Constant
Transmission Rates

I Authorship: Jointly co-authored with Dr. Konstantinos Kalogeropoulos
and Dr. Nikolaos Demiris

I Timeline: Second project
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Motivation

I Standard techniques to model SARS-CoV-2 like phenomena are known
as compartmental models (SIR, SEIR, etc.)

I Important factor: Rt =
βS(t)
γN(t) , the number of secondary infections that

one infected person would produce through the entire duration of the
infectious period.

I Typically, β, the transmission rate between susceptible and infected
individuals, is kept constant across the time horizon.

I Goal: Make β time varying, but keep ease of interpretability for the
model.

(*) (Cohen, 1992; Diekmann et al., 2012)
(**) (Flaxman et al., 2020)
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Model Setup - HSMM style Epidemic Model

z1 z2 · · · z29 · · · zThsmmθi,zαi

β1 β2 · · · β29 · · · βTvac, cr

c1 c2 · · · c29 · · · cThθcγi

ifr, f, dr d1 d2 · · · d29 · · · dT

gθdδi

K
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Model Setup - HSMM style Epidemic Model

I Reported cases cr
t ∼ Negative BinomialAlternative

(
c∗

t , c∗
t +

c∗2
t
φc

)
, where c∗

t

are the model implied cases

I Reported deaths d r
t ∼ Negative BinomialAlternative

(
d i

t , d i
t +

d i 2
t

φd

)
where d i

t

are the model implied deaths.

I d i
t are a function c∗

t , which are obtained from solving the ODE

dSt

dt
= −βtSt

(I1,t + I2,t)
N

− ρνt−U ,

dE1,t

dt
= βtSt

(I1,t + I2,t)
N

− εE1,t ,

dE2,t

dt
= εE1,t − εE2,t ,

dI1,t
dt

= εE2,t − γI1,t ,

dI2,t
dt

= γI1,t − γI2,t ,

dRt

dt
= γI2,t + ρνt−U ,
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Challenges

I Attaching latent state sequence to β significantly increases
computational complexity for likelihood.

I Observation model significantly more computational complexity than
previous project.

I Significant expert knowledge required for model parameter.

I Underlying data very noisy.
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Contribution

I Proposed a novel HSMM-Epidemic Model (HSMMEM) that is more
flexible than its alternatives but still convenient to interpret.

I Designed a tailored Particle Filter (PF) that can be used efficiently for
sequential inference.

I Identified the number of latent regimes for the provided data.

I Showed that a combining reported fatalities and infections enhances
predictive performance.
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Overview

I Working Title:
A Class of Stochastic Volatility Models with Copula Dependencies

I Authorship: Jointly co-authored with Dr. Konstantinos Kalogeropoulos,
Prof. Alexandros Beskos and Dr. Aristidis Nikolopoulos

I Timeline: Third project
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Motivation

I Stochastic Volatility (SV) models can capture important stylised effects *.

I Empirically, joint distribution of prices and volatilities has asymmetric
structure**.

I Copula theory provides an flexible modelling framework for this case ***.

I Goal: Incorporate Copula dependencies and suggest useful models for
log-prices and volatilities.

(*) (Ghysels et al., 1996; Shephard, 1996)
(**) (Ning et al., 2008)
(***) (Joe, 2014)
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Model Setup - Stochastic Volatility Copula

x1copθcα

v1 v2 · · · vTfθvβ

s1 s2 · · · sTgθsγ
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Model Setup - Stochastic Volatility Copula

I Discretization of Heston Model based on Euler-Maruyama scheme:

St = St−1 +
(
µS − exp(Xt)/2

)
δ +
√
δ exp(Xt/2) εt ,

Xt = Xt−1 +
κ
(
µV − exp(Xt−1)

)
− 1

2σ
2

exp(Xt−1)
δ + σ

√
δ exp(−Xt−1/2) ζt .

I Error term dependency structure typically specified as

(εi , ζi) ∼ N
(

0,
(

1 ρ
ρ 1

))
,

where ρ ∈ (−1, 1) is known as leverage effect.

I We propose a more flexible dependency structure using the Copula
machinery. For marginals FS and FV , the transformed noises are:

(ε̃i i , ζ̃i) := (FS(εi),FV (ζi)) ∼ C(ε̃i i , ζ̃i ; θ)
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Challenges

I Identify a suitable set of Copula choices

I Does any of those perform better versus the benchmark Normal
Copula?

13/14



Motivation HSMM Project Covid-19 Project SV Copula Project Appendix

Contribution

I We explored a new class of Stochastic Volatility Models with Copula
dependencies.

I We benchmarked carefully selected Copula choices based on different
model comparison criteria and their predictive performance.

I The Frank copula outperformed standard choices in financial modelling
literature with respect to all benchmarks and across all time horizons.
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Discussion
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