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Motivation



Economies move in cycles

Credit: Economics fun.
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Motivation Inference Applications Impact Appendix

State Space Models

I A State Space Model (SSM) with parameter θ ∈ RD is a bivariate
stochastic process {Et ,St}t=1,2,..., with the following distributional form:

I

θ ∼ p(θ),
S0 ∼ p(s0 | θ),
St ∼ p(st | s0:t−1, θ),
Et ∼ p(et | e1:t−1, s0:t , θ).

I The goal is to infer the full posterior distribution :

p(s0:T , θ | e1:T ) =
p(e1:T | s0:T , θ) p(s0:T | θ) p(θ)

p(e1:T )
. (1)

I SSMs can handle structural breaks, shifts, or time-varying
parameters of a model and still have an interpretable structure. They
are generative, and allow for multi step forecasting, imputing missing
data, and account for non-equal time steps.
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Challenges

I Marginal likelihood p(e1:T ) intractable, but computation can be
avoided.

I Naive batch estimation of high dimensional full posterior
distribution p(s0:T , θ | e1:T ) computationally unfeasible.

I Need to efficiently evaluate full posterior distribution
iteratively as p(e1:T , s0:T | θ) = p(s0 | θ)

∏T
t=1 p(st |

s0:t−1, θ) p(et | e1:t−1, s0:t , θ).

I Marginal posterior distribution p(θ | e1:T ) difficult to compute,
as p(e1:t | θ) =

∫
p(e1:T , s0:T | θ) ds0:T is costly to evaluate or

intractable.
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Focus - HSMMs

I In HMM case, P(St+k = j ,St+1:t+k−1 = i | st = i) is implicitly geometric.

I HSMMs * explicitly describe state durations:

I et ∼ N(µst , σst )

I st ∼

δ(St = st−1) dt−1 > 0, **

P(St | st−1, dt−1) dt−1 = 0.

I dt ∼

δ(St = st−1) dt−1 > 0 ,

P(St | st−1, dt−1) dt−1 = 0 .

I Can compute
∑

s0:T ,d0:T
p(e1:T , s0:T , d0:T | θ) in O(K 2(dmax − dmin)

2T ) ***
for HSMM instead of

∑
s0:T

p(e1:T , s0:T | θ) in O(K 2T ) **** for HMM.

(*) see (Yu, 2010) and (Yu, 2016)

(**) δ(a, b) is the Kronecker product and equals 1 if a = b and 0 otherwise.

(***) dmin = minimal state duration, dmax = maximal state duration, typically (dmax − dmin) >> K

(****) see (Baum and Petrie, 1966) . K = number of latent states, T = number of data points.
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Focus - HSMMs continued

I

x1πα

s1 s2 · · · sTfθi,sβi

e1 e2 · · · eTgθi,eγi

K

(a) K -state Bayesian HMM,
parameter θ and hyper-parameter
{β, γ}

x1πδ

d1 d2 · · · dThθi,dαi

s1 s2 · · · sTfθi,sβi

e1 e2 · · · eTgθi,eγi

K

(b) K -state Bayesian HSMM,
parameter θ and hyper-parameter
{α, β, γ}

I In HMM case, P(St+k = j ,St+1:t+k−1 = i | st = i) is implicitly
geometric, HSMMs can explicitly model state durations.

I Can compute
∑

s0:T ,d0:T
p(e1:T , s0:T ,d0:T | θ) in

O(K 2(dmax − dmin)
2T ) * for HSMM instead of∑

s0:T
p(e1:T , s0:T | θ) in O(K 2T ) ** for HMM.

(*) see (Yu, 2010) and (Yu, 2016). dmin = minimal state duration, dmax = maximal state duration, typically (dmax − dmin) >> K

(**) see (Baum and Petrie, 1966) . K = number of latent states, T = number of data points.
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Motivation and contribution
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Particle MCMC

I Independent of continuity of st , can decompose problem into
targetting p(s0:T | e1:T , θ) and p(θ | e1:T , s0:T ):

I Approximate p(s0:T | e1:T , θ) via a particle filter (PF *).

I Target p(θ | e1:T , s0:T ) via MCMC.

I Formally known as Particle Gibbs **.

I Can compute PF estimate for both p(s0:T | e1:T , θ) and
p(e0:T | θ) in O(NT ) ***.

(*) see, e.g., Doucet and Johansen (2011)

(**) see (Andrieu and Roberts, 2009), (Andrieu et al., 2010), (Lindsten et al., 2014) and (Lindsten et al., 2015)

(***) N = number of particles, typically K << N < T .
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Sequential Estimation

I Obtain posterior predictive distribution by integrating s0:T & θ:

p(eT+1 | e1:T ) =

∫
p(eT+1, sT+1, s0:T , θ | e1:T ) dsT+1, s0:T , θ

=

∫
p(eT+1 | sT+1, s0:T , θ, e1:T ) p(sT+1 | s0:T , θ, e1:T ) p(s0:T , θ | e1:T ) dsT+1, s0:T , θ.

(2)

I Sampling ST+1 and ET+1 trivial after p(s0:T , θ | e1:T ) is obtained.

I Goal: sequentially explore p(s0:t , θ | e1:t) for t = 1, . . . ,T .
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Sequential Monte Carlo Squared *

I Explore n sequences of distributions p(sn
0:t , θ

n | e1:t) for t = 1, . . . ,T .

I Calculate p(et | e1:t−1, θ
n), p(e1:t | θn) and propagate sn

0:t online via PF.

I If p(et | e1:t−1, θ) estimates too noisy, jitter sn
0:t , θ

n via Particle Gibbs.

I Almost real time.

I Obtain predictive distributions for et+1 and st+1 and
an estimate for marginal likelihood p(e1:t) for each t = 1, . . . ,T .

I Use CRPS ** to compare predictive distribution of models. For forecasts
Xi , i = 1, . . . ,m and observation y , CRPS can be calculated as

CRPS(F̂m, y) =
1
m

m∑
i=1

|Xi − y | − 1
2m2

m∑
i=1

m∑
j=1

|Xi − Xj |. (3)

(*) see Chopin (2002) and Chopin et al. (2013)

(**) see, e.g., (Jordan et al., 2019)
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State Space Models and Financial Data

I Stylized financial facts *:

I (u.1) Returns not iid, but show little serial correlation.

I (u.2) Extreme returns appear in clusters.

I (u.3) Returns have heavy tails.

I (u.4) Volatility clusters and varies over time.

I U.S. economic cycles widely vary in duration **.

I Apply SMC2 for HSMM on financial data:
I are model parameter constant across time?

I how does HSMM fare against other SSM?

(*) see, e.g., (McNeil et al., 2005)

(**) see, e.g., https://www.nber.org/cycles.html
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Results - HSMM

I Traceplot for model parameter: I Traceplot for state trajectory:
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Results - Prediction and Model Comparison

I SMC2 predictions:

I CRPS score for various models:

I

Model CRPS Score
HSMM 228.13
SV 229.43
HMM 230.15

I More analysis needed!
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Research contribution

I Model and Applications contribution by

I providing alternative ways for parameter estimation on HSSMs.

I Algorithmic contribution by

I providing a toolbox for estimation and further inference on SSMs
with arbitrary state and observation dependency that will be open
sourced over the next months.

I providing ideas for automatic adaption of SMC2 tuning parameter,
such as the number of jittering steps.
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Discussion
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HMM as mixture distribution

HMM as sequential mixture:

· · · st st+1 · · ·

et et+1

P(et+1 | st = k) =
∑
st+1

P(et+1, st+1 | st = k)

=
∑
st+1

P(st+1 | st = k)P(et+1 | st+1)



Implicit geometric duration distribution of HMM

For a discrete 2-state, homogenous Markov chain, using the chain rule and
the Markov assumption, it holds:

P(St+3 = j ,St+2 = i ,St+1 = i | St = i) = P(St+3 = j | St+2 = i)P(St+2 = i , | St+1 = i)P(St+1 = i | St = i)

= (1− Tii) ∗ T 2
ii

In general, for t + k steps:

P(St+k = j , . . . ,St+1 = i | St = i) = (1− Tii) ∗ T k−1
ii

= GeometricTii ,

where the geometric distribution has to be interpreted as the length of state
duration up to and including the transition to the other state.



HSMM distribution

In an EDHMM, transitions are allowed only at the end of each state, resulting in the following
distributional forms:

St | st−1, dt−1 ∼ P(St | st−1, dt−1) =

{
δ(St = st−1) dt−1 > 0

Tst−1,. dt−1 = 0
(4)

Dt | st , dt−1 ∼ P(Dt | st , dt−1) =

{
δ(Dt = dt−1 − 1) dt−1 > 0

Dst dt−1 = 0
(5)

Et | st ∼ Ost (6)

where δ(a, b) is the Kronecker product and equals 1 if a = b and 0 otherwise. Given equation 4
and 5, we can write the distribution for Zt = {St ,Dt}

P(Zt | zt−1) = P(St | st−1, dt−1)P(Dt | st , dt−1)

= 1 ∨ Tst−1,.Dst

(7)

The joint distribution of an EDHMM given the parameter corresponding to the graphical model can
be stated as

P(S,D,E | θ) = P(s0 | T0)P(d0 | D0)
T∏

t=1

P(st | st−1, dt−1, T )P(dt | st , dt−1,D)P(et | st ,O)

(8)



Particle Filter Algorithm

input : Observation e1:T , importance distribution π, parameter θ = {Z = {D,T },O}, ParticleNumber N

output: Particles X1:N
1:T , Weights w1:N

1:T , Weights.Normalized W1:N
1:T

// Initialize particles and weights

for n ← 1 to N do
Sample particle Xn

1 ∼Z0 ;

Compute wn
1 (xn

1 ) =

Oxn
1
(e1)Z0(x

n
1 )

π(xn
1 |e1)

end

Resample (xn
1 , wn

1 )n=1:N with replacement to get equally weighted particles (x̃n
1 ,

1
N )n=1:N ;

// Recursively calculate probabilities of interest

for t ← 2 to T do
for n ← 1 to N do

1. Sample Xn
t ∼ π(Xt | x̃n

t−1, et ) ;

2. Set Xn
1:t = (x̃n

1:t−1, xn
t ) ;

3. Calculate weights:

wn
t (Xn

1:t ) ∝ wn
t−1(X

n
1:t−1)

Oxn
t
(et )Zxn

t−1,x
n
t

π(xn
t | x̃n

t−1, et )

end
i. Normalize all N weights:

Wn
t =

wn
t (Xn

1:t )∑
i wi

t (X
i
1:t )

ii. Resample (xn
1:t , wn

t )n=1:N with replacement to get equally weighted particles (x̃n
1:t ,

1
N )n=1:N ;

end

Algorithm 1: General particle filter algorithm



Particle Filter time complexity

Forward backward algorithm in basic HMM: O(K 2T ), where K is the number
of states and T is the time. At each time point t, one needs to evaluate both, the
forward and the backward probabilities for all hidden states. If one would not use
this iterative procedure and just try a brute force method to find all possible state
sequences, one would have a time complexity of O(K T T ).
Forward backward algorithm in HSMM: In addition to the basic HMM
complexity, one needs to truncate the sequence to a minimum and maximum
duration, dmin and dmax . The computational complexity then becomes
O(K 2(dmax −dmin)

2T ), where typically (dmax −dmin) >> K might go from 0 to T .
Particle Filter algorithm in basic HMM and HSMM: Computational complexity
both linear in time T and in number of particles N, so complexity is O(NT ).
However, if I would do forward filtering an backward something as well, the
complexity would then also be O(N2T ). Usually, N >> K , but if K is growing
(Infinite HMM/HSMM), particle filter might be faster than forward-backward
algorithms.
Conditional Particle Filter: is a special case, where a reference trajectory
guides the particle filter, making it possible to use very few particles and also use
backward smoothing efficiently.



Particle MCMC Algorithm

input : Proposal distribution Q, iterationNumber N,
Particle filter proposal π, particleNumber M,
observation e1:T

output: (θi ,Z i
1:T )i=1:N

Initialize θ ;
Run particle filter→ get P̂(e1:T | θ). ;
for i ← 1 to N do

1. Propose a new θ?, θ? ∼ Q(θ? | θ) ;
2. Run particle filter→ get P̂(e1:T | θ?) and Z?

1:T . ;
3. Accept the pair (θ?,Z?

1:T ) with probability:

min(1,
P̂(e1:T | θ?)
P̂(e1:T | θ)

P(θ?)

P(θ)

Q(θ | θ?)
Q(θ? | θ)

)

4. If accepted, set P̂(e1:T | θ) = P̂(e1:T | θ?) and θ = θ?.
end

Algorithm 2: Particle Metropolis Hastings algorithm



Hamiltonian Monte Carlo Primer

(1) To draw from posterior of interest, introduce auxiliary momentum variable ρ and draw from the joint density
p(ρ, θ) = p(ρ | θ)p(θ). Usually, ρ does not depend on θ. p(ρ, θ) define a Hamiltonian

H(ρ, θ) = −logp(ρ, θ)

= −logp(ρ | θ) − logp(θ)

= T (ρ | θ) + V (θ),

(9)

where T (ρ | θ) is called ”kinetic energy”, and V (θ) ”potential energy” (∝ - log posterior).
(2) Joint system {ρ, θ} evolves via Hamiltonian equations

dθ

dt
= +

∂H

∂ρ
= +

∂T

∂ρ

dρ

dt
= −

∂H

∂θ
= −

∂T

∂θ
−
∂V

∂θ

(10)

(3) To solve two-state differential equations in (2), can use, e.g., leapfrog integrator.
(a) First, sample ρ ∼ MvNormal(0,M)

(b) Alternate half-step updates of the momentum and full-step updates of the position L times (for some discretization
size ε):

(i) ρ ← ρ − ε
2
∂V
∂θ

(ii) θ ← θ + εM−1ρ
(iii) ρ ← ρ − ε

2
∂V
∂θ

(c) half-step back for the momentum variable ρ
(d) Apply a Metropolis acceptance step to account for numerical errors, which can be stated via the Hamiltonians,

α = min(1, exp(H(ρ, θ) − H(ρ∗, θ∗))) (11)

(4) Once (3) is finished, discard momentum variable to have a draw from the posterior via HMC. Many different variations
available, also ways to automate tuning of ε or L (or both if integration time dynamic) and M.
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