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Motivation
Economies and financial markets
move in cycles. A long period
of expansion is often interrupted
by an abrupt shock, followed by a
prolonged recession period. Gov-
ernment policy, economic decision-
making and several areas in finan-
cial institutions could all signifi-
cantly benefit from advancement in
this research area. How could one
model such phenomena?

Status quo

As a starting point, basic hidden Markov models (HMM) have often been used to
describe economic behavior. At each time step, a latent state variable is assigned
to a (multivariate) observation sequence. Major weaknesses of such models are

(1) the implicit geometric distribu-
tion of HMMs, which causes rapid
switching between states:

(2) the a priori assignment of a fixed
number of hidden states:
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Problem 1 can be circumvented by explicitly modelling state durations, such
models are known as hidden semi-Markov models (HSMM). Problem 2 may be
tackled in a Bayesian (nonparametric) framework (see Beal et al., 2002; Teh et al.,
2006), for inferring arbitrarily large state complexity from data. Both extensions
come at the cost of higher computational burden and less tractability.

Challenges and research focus

Unfortunately, current Bayesian implementations of HSMMs typically suffer from
various difficulties:

• Metropolis style MCMC sampler need to evaluate likelihoods, which is com-
putationally challenging for HSMMs. Iterative forward-backward algorithms
have a time complexity of O(K2(dmax−dmin)2T ), where T is the sequence length,
K the number of states and d the duration length. Typically, (dmax − dmin) >> K
can range from 1 up to T .

• Gibbs-style MCMC implementations typically suffer from a large autocorre-
lation in the posterior samples as parameter and state trajectories are highly
correlated.

My research focus is thus on simultaneously tackling both weaknesses of basic
HMMs by implementing efficient Bayesian inference algorithms for HSMMs.

Bayesian hidden semi-Markov model

Definition 1 (Hidden semi-Markov model). A hidden semi-Markov model is a bi-
variate stochastic process {Zt,Et}t=1,2,...,T , where Z = (S,D) = {St,Dt}t=1,2,...,T is an un-
observed semi-Markov chain and, conditional on {Zt}, {Et} is an observed sequence of
independent random variables. S is the latent state sequence, and D is the correspond-
ing ’latent remaining’ duration sequence.

d0 d1 d2 · · · dTDiαi

s0 s1 s2 · · · sTTiβi

e1 e2 · · · eTOiγi

K

K-state Bayesian HSMM, parameter θ = (D,T ,O) and hyperparameters (α,β,γ).

Parameter estimation

In a Bayesian setting, one is interested in the full posterior Z = (S,D) and θ given
the observations E, P (Z,θ | E). As no closed form solution exists, one typically
resorts to MCMC algorithms to draw samples from this distribution. A standard
MCMC sampler can be implemented by repeating N times the following steps:
1. Propose θ? from a proposal distribution f (θ? | θ)
2. Propose Z? from the conditional distribution P (Z? | θ?,E).
3. Accept the pair (θ?,Z?) with acceptance probability

Acceptance =
P (Z? | θ?)
P (Z | θ)

P (E | Z?,θ?)
P (E | Z,θ)

P (Z | E,θ)
P (Z? | E,θ?)

P (θ?)
P (θ)

q(θ | θ?)
q(θ? | θ)

=
P (E | θ?)
P (E | θ)

P (θ?)
P (θ)

q(θ | θ?)
q(θ? | θ)

.

where one can simplify the acceptance probability using the basic marginal
likelihood identity (BMI) of Chib (1995). The main challenge here is to evaluate
the (marginal) likelihood P (E | θ),

P (E | θ) =
∑
D

∑
S

P (S,D,E | θ)

=
∑
D

∑
S

P (s0 | T0)P (d0 | D0)
T∏
t=1

P (st | st−1,dt−1,T )P (dt | st,dt−1,D)P (et | st,O)

as both S and D are unknown and standard iterative algorithm used in the basic
HMM case have a time complexity of up to O(K2T 3). An alternative would be
to replace this (marginal) likelihood Lθ(e1:T ) with an unbiased estimate L̂θ(e1:T ).
(Andrieu and Roberts, 2009) have shown the puzzling result that one can do so
and still target the exact posterior distribution of interest, which led to a new
research area now called ’exact approximate MCMC’. MCMC algorithm used in
this setting are known as ’particle MCMC’ sampler, see Kantas et al. (2014).

Particle MCMC

To summarize, a particle filter is integrated in a MCMC algorithm to obtain
L̂θ?(e1:T ) and to draw a trajectory sample Z?1:T . The computational complexity is
both linear in time T and in number of particles N , O(NT ), N ≈ T . It is straight
forward to extend estimation to the continuous state case and the computational
complexity is not dependent on the number of states. A summary plot for pos-
terior statistics of a particle metropolis sampler for a 2-state HSMM with normal
observations and poisson durations is shown below.
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Fig.1 shows the average posterior remaining state duration and the 10% & 90% credible interval at each time step
against the actual duration. Fig.2 shows the posterior mean and the most probable visited state against the actual

state. Fig.3 shows the observation sequence that served as input for the particle MCMC sampler.

Preliminary results and outlook

• Particle MCMC is a competitive alternative to current Bayesian inference algo-
rithm for HSMMs. Most notably, the time complexity of the likelihood eval-
uation is theoretically not dependent on the number of states, which makes
particle MCMC suitable to simultaneously tackle both basic HMM problems
discussed in the previous section.

• Practically, particle filter often experience path degeneracy problems. This
problem is amplified if the number of states increases. Hence, resampling steps
are necessary and drastically improve efficiency and performance of particle
MCMC samplers.

• However, posterior samples from particle Metropolis/Gibbs sampler still ex-
perience a high autocorrelation, and other, more advanced MCMC versions
might yield better results.
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